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Learning unrealizable tasks from minimum entropy queries 

Peter Sollicht 
Department of Physics, University of Edinburgh. Edinburgh EH9 3% UK 

Received 11 April 1995 

Abstract. In supervised leaming, leming  from queries rather than from random examples can 
improve generalization performance significantly. We study the performance of query learning 
for unrealizable tasks, where the student cannot leam from the perfectly. As a simple model 
scenario of this kind, we consider a linear percepmn student leaming a general nonlinear 
perceptron teacher. Two kinds of queries for maximum information gain, i.e. minimum entropy, 
are investigated minimum srudenr space entropy (MSSE) queries, which are appropriate if the 
teacher space is unknowu. and minimum reacher space entropy (MISE) queries, which can be 
used if the teacher space is assumed to be known, but astudent of a simpler form has deliberately 
been chosen. We find that for MSSE queries. the StrUCtUre of the SNdent space determines the 
efficacy of query learning. MTSE queries. on the other hand, which we investigate for the extreme 
case of a binary perceptron teacher, lead to a higher generalization mor thm random examples. 
due to a lack of feedback about the progress of the student in the way queries are selected. 

1. Introduction 

In recent years, the powerful tools of statistical mechanics have been used successfully 
to study the behaviour of systems that learn from examples (for reviews see, for 
example, [1,2].) The traditional approach has been to study generalization from random 
examples, where each example is an input-output pair with the input chosen randomly 
from some fixed distribution and the corresponding output provided by a teacher that the 
student is trying to approximate. However, the amount of novel information contained in 
random examples decreases towards zero as leaming proceeds. Generalization performance 
can therefore be improved by learning from queries, i.e. by choosing the input of each 
new training example such that it will be, together with its expected output, in some sense 
‘maximally useful’. The most widely used measure of ‘usefulness’ is the information gain, 
i.e. the decrease in entropy of the post-training probability distributions in the parameter 
space of the student or the teacher. 

We shall call the resulting queries ‘minimum (student  or^ teacher space) entropy 
(MSSF~MTSE) queries’; their effect on generalization performance has recently been 
investigated for realizable tasks, where student and teacher space are identical [3-51, and 
was found to depend qualitatively on the structure of the input-output mapping to be learned. 
For a linear perceptron, for example, one obtains a relative reduction in generalization error 
compared to learning from random examples which becomes insignificant as the number of 
training examples, p ,  tends to infinity. For a perceptron with binary output, on the other 
hand, minimum entropy queries result in a generalization error which decays exponentially 
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as p increases-a marked improvement over the much slower algebraic decay with p in 
the case of random examples. 

In practical situations, one very often encounters unrealizable rash, where the student 
can only approximate the teacher, but not learn it perfectly. Unrealizable tasks can arise 
for two reasons. Firstly, the teacher space (i.e. the space of models generating the data) 
might be unknown. Because the teacher space entropy is then also unknown, MSSE (and 
not MTSE) queries have to he used,for query learning. Secondly, the teacher space may be 
known, but a student of a simpler structure might have deliberately been chosen to facilitate 
or speed up training, for example. In this case, MTSE queries could be employed as an 
alternative to MSSE queries. The motivation for doing this would be strongest if, as in the 
learning scenario that we consider below, it is known from analyses of realizable tasks that 
the structure of the teacher space allows more significant improvements in generalization 
performance from query learning than the structure of the student space. 

With the above motivation in mind, in this paper we investigate the performance of both 
MSSE and MTSE queries for B simple model unrealizable task, in which a linear perceptron 
student is trained on data generated by a general nonlinear perceptron teacher. Both student 
and teacher are specified by an N-dimensional weight vector with real components, and we 
will consider the thermodynamic limit N + CO, p + CO, with the normalized number of 
training examples, (Y = p/N = constant. Preliminary results for this scenario have been 
reported in [6]. 

Let us comment briefly on the practical relevance of the analysis of a learning scenario 
with a linear student. While it is true that in most applications of neural networks the 
nonlinearities present in standard feedfonvard networks play an important role, many 
fundamental insights into neural network learning have been obtained from analyses of 
linear model systems, where analytical solutions can be obtained [7-12]. Furthermore, it 
has been argued that the properties of networks with smooth nonlinearities can often be 
related to those of linear models by means of a local linearization procedure [13-151. It is 
therefore reasonable to expect that at least qualitatively, the results of our analysis will to 
some extent carry over to more realistic feedfonvard neural networks. 

The remainder of this paper is structured as follows. In section 2 below we formally 
define the learning scenario to be investigated. The generalization error for learning from 
random examples and from MSSE queries is calculated in section 3; MTSE queries are 
considered in section 4 for a binary perceptron teacher, which is in some way the most 
extreme case as explained below. We conclude in section 5 with a summary and discussion 
of our results. 

2. The model 

We denote students by N (for ‘neural network’) and teachers by V (for ‘elements of the 
version space’, see section 4). A student N is specified by an N-dimensional weight vector 
w, E RN and calculates its output y,“ for an input vector x E RN according to 

Teachers are similarly parametrized in terms of a weight vector w, E RN, but calculate 
their output yv by passing the (scaled) scalar product of z with this weight vector through 
a general nonlinear output function. Since we allow the teacher outputs to be corrupted 
by noise, we only specify the average output for a given input and assume that it can be 
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written in the form 

where i(.) is a ‘noise-averaged’ output function. Implicit in equation (2.1) is the assumption 
that the noise process preserves, on average, the perceptron structure of the teacher. 
Similarly, we assume that the variance of the fluctuations Ayv of the teacher outputs yv 
around their average values (2.1) can be written as a function A*(.) of &zTw, alone: 

This condition is fulfilled, for example, for additive noise on the outputs with finite, input- 
independent variance or (for inputs obeying a spherical constraint as considered below) when 
the components of the teacher weight vector are corrupted by additive Gaussian noise with 
identical variance for each of the components. Noise on the inputs, which has previously 
been studied with the aim of improving generalization performance (see, for example, [16- 
IS]), can be treated similarly. For additive Gaussian noise on the input vector I (again 
with identical variance for each component), equation (2.2) holds as long as the length of 
the teacher weight vector wy is fixed; this condition is enforced with probability one in the 
thermodynamic limit for the Gaussian teacher prior considered below. 

We assume that the inputs are drawn from a uniform spherical distribution, P(z) w 
S(z2-Nu2).  Using as our error measure the standard squared output deviation, i ( y , , , - ~ ~ ) ~ ,  
we obtain for the generalization error, i.e. the average error that a student N makes on a 
random test input when trying to approximate teacher V ,  

2 eg(N, V )  = ~ ( ( Y N  - yv) )~(,viz.v)p(z) 

where 

(2.4) R = -wNwy 1 ,  Q,, =-is”; 1 Qv = z w y .  1 ’  N 
Here ( . )h  denotes an average over a Gaussian random variable h with zero mean and variance 
Qyu:, and we have assumed the thermodynamic limit, N ca. of a perceptron with a 
very large number of input components. We have kept the last term in (2.3), which arises 
from the noise on the teacher outputs alone and could in principle be discarded, in order to 
make the comparison of linear and nonlinear teachers more transparent. 

As our training algorithm we take stochastic gradient descent on the training error Et 
which, for a training set O(P) = ((z”, y”), p .= 1 . . . p ) ,  is 

A weight decay term fhu:w: is added for regularization, id. to prevent overfitting of noise 
in the training data, parametrized in terms of a dimensionIess weight decay parameter A. 
Stochastic gradient descent on the resulting energy function 

E  et + ‘hrr2w2 2 X N  (2.6) 
yields a Gibbs post-training distribution of students 

P(N~o@)) cx exp(-E/T) (2.7) 
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where the training temperature T measures the amount of stochasticity in the training 
algorithm. For the linear perceptron students considered here, this post-training distribution 
of students is a Gaussian distribution with mean M;’a and covariance matrix TM;’, 
where (see, for example, 1191 or any textbook on Bayesian statistics) 

with 1 denoting the N x N unit matrix. To have a well defined thermodynamic limit, 
we assume, as usual, that p = a N ,  i.e. that the number of training examples is 
proportional to the size of the perceptrons. We will concentrate our analysis on the average 
generalization error which can be obtained by successively averaging (2.3) over the post- 
training distribution of students, over the distribution of training sets &”) produced by 
a given teacher V ,  and finally over the prior distribution of teachers, which we assume 
to be Gaussian, P ( V )  o( exp(--fw:/u:). Under this prior, Q, = U,” + O(l/m), so 
that in the thennodynamic limit Q y  can be replaced by U,’ in (2.3). Hence the only non- 
trivial averages in the calculation of the average generalization error are the averages of 
the overlap parameters R and Q, defined in (2.4). Note that typical deviations of the 
generalization error from its average value are 0(1/*) and are therefore vanishingly 
small in the thermodynamic limit. 

The main aim of the present paper is to calculate, for the learning scenario defined 
above, the average generalization error as a function of the normalized number of training 
examples, 01 = p,”, for learning from MSSE and MTSE queries, comparing the results to 
learning from random examples, and hence to draw conclusions about the efficacy of query 
learning in unrealizable tasks. 

3. Random examples and minimum student space entropy (MSSE) queries 

We now calculate the generalization performance resulting from random examples and 
from MSSE queries. For learning from random examples, each input in the training set is 
drawn randomly and independently from the assumed uniform spherical input distribution. 
By contrast, for MSSE queries each new training input is chosen such that the entropy of 
the post-training distribution of students is minimized. For the stochastic gradient descent 
learning algorithm described above and the resulting Gaussian post-training distribution, 
this entropy (normalized by N) is given by 

up to an unimportant constant which depends on the learning temperature T only. The 
student space entropy is independent of the training outputs y p ,  which is characteristic of 
linear students (see, for example [20,211). The entropy (3.1) is minimized by choosing each 
new training input along an eigendirection of the existing M y  with minimal eigenvalue [5]. 
If we apply such minimum entropy queries in sequence, we find that the first N training 
inputs are pairwise orthogonal but otherwise random (on the sphere eZ = Nu:), followed 
by another block of N such examples, and so on. The overlap ~ ( Z ” ) ~ X ”  of two different 
inputs in a training set generated by MSSE queries is thus either 0 (if they belong to the same 
block) or of the size typical for random inputs, which is O(1,’fi). These ‘pseudo-random’ 
overlaps simplify the calculation of the average generalization error, which is outlined in 
appendix A. 

N. 
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We obtain the following result for the average generalization error for leaming from 
random examples and MSSE queries (primes denote derivatives): 

eg = f~&,”u,’ [AoptG(A) +A(Aopt - A)G‘(A)] + Eg.min. (3.2) 

Here we have introduced the constants 

(3.3) 

(3.4) 

1 

“v% 
Yeff = m ( h H ( h ) ) k  (j’(h))h 

a& = U,’,, + (g2(h))h - ~ ( h j ( h ) ) i  
1 

0” ux 
U; = (A2Q))h 

6 g.mn . - @  - 2 eff (3.6) 
where (. . . )h denotes an average over a zero mean Gaussian random variable with variance 
U&T;. The function G is the average of 5 trA4;’ over the training inputs and is given by 

I 
21 

G(A) = -(1 -a - A + & 1  - a  - A)2+41) (3.7) 

for random examples [?I, whereas for MSSE queries its value is [5]  
Aff 1-ha  

G(A) ~= +- 
A + LaJ 1 + LorJ + 1 

where laJ is the greatest integer less than or equal to a and Aa = a- LaJ. In equation (3.2) 
we have restricted ourselves to the case of zero learning temperature T as non-zero T gives 
only an additional positive-definite contribution $TG(A) to the average generalization error. 
For finite a, cg is minimized when the weight decay parameter A is set to its optimal value, 
A,,, which is related to the effective signal-to-noise ratio of the teacher as explained below. 
As a + CO, the generalization error tends to the minimum achievable value, cg.min, which 
is independent of X as expected for the limit of an infinitely large training set. 

We now explain the remaining constants introduced in (3.3)-(3.6). First note that, in all 
of the averages involved, uvu, sets the scale of the arguments of ?(.) and A’(.). This was to 
be expected since, under the assumed input distribution and teacher space prior, -!-zTwv 
has zero mean and variance ay”u2. In equation (3.4). ait is the average variance of the 
fluctuations of the teacher outputs around their average, i.e. the actual noise level. In order 
to clarify the meaning of yeff and U&, consider the special case of a linear teacher with 
‘gain constant’ y ,  which is given by j ( h )  = yh, and let the teacher outputs be corrupted 
by zero mean additive noise. It then follows that ye = y and 0% = U:,, and the minimum 
generalization error becomes cg.,,,jn = $&, which is simply the contribution from the noise 
on the teacher output. The optimal weight decay is hop, = u & / y 2 a ~ u ~ ,  which can be 
shown to be the inverse of the mean-square signal-to-noise ratio of the teacher [5] .  For a 
general nonlinear teacher and noise model, we can interpret (3.3) and (3.4) as definitions 
of an appropriate effective gain constant and noise level, from which lop, and cgp.min are 
calculated just like for a linear teacher with additive output noise. The difference a& - U& 

is greater than zero for nonlinear j( .) ,~and can be interpreted as effective noise arising from 
the fact that the linear student cannot reproduce the teacher perfectly. Note from (3.4) that 
this contribution to the effective noise can be very large for noise-averaged teacher output 
functions j ( . )  containing a large part which is even in h. Since the effective gain ye# only 
depends on the odd part of j ( . ) ,  it follows from (3.5) that Aopt can be arbitrarily large even 
if there is no actual noise on the teacher outputs. 

JE 
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Figure 1. Effective noise level versus actual noise level for a teacher with tanh(.) outpur 
function. for additive Gaussian noise on ( U )  the outpuls and ib) the components of the teacher 
weight vector. The c w e s  ace labelled by the values of U:.:. 

By way of example, we show in figure 1 plots of U& versus U:, for a teacher with 
a tanh output function, for additive output noise (figure I(u)), and for additive Gaussian 
noise with zero mean and identical variance on each of the N components of the teacher 
weight vector (figure l(6)). In the latter case we have, denoting the noise variance by 5;, 
i (k )  = (tanh(k+h))j, and A2(h) = (tanh2(k+i))s -&k), where h is Gaussian with mean 
zero and variance 5:~: .  Applying equation (3.4) we obtain U& and U& as functions of 5”; 
eliminating 5” yields U& as a function of U& as shown in figure I@). As U& + 1 (which 
corresponds to 5” 3 CO), the difference U& - U& decreases towards zero because, with 
increasing 6”. g(.) becomes approximately linear over an increasingly large range. Note 
that due to the nonlinearity of the teacher tanh(.) output function, U& remains non-zero in 
d l  cases even for U;, = 0. 

We have seen that the average generalization error obtained when learning to 
approximate a nonlinear teacher with a linear student is exactly the same as for a noisy 
linear teacher with an effective gain and noise level given by (3.3) and (3.4). Consequently, 
the efficacy of query learning for a nonlinear teacher is identical to that for a noisy linear 
teacher. Specifically, if we define the relative improvement in generalization performance 
due to querying, K ,  as 

cg(random examples) - +,,j. 
€,(queries) - cgg.min 

K(O1) 

then the teacher nonlinearity enters the result only through the value of Aopt. Furthermore, 
the functional dependence on A and hap, is the same as for a noisy linear teacher. Figure 2 
shows plots of K ( o ~ )  for some representative values of A and Aopr. For large a, K has the 
asymptotic expansion K = 1 + 1/01 + 0(1/01*), which means that for 01 -+ 00, random 
examples and queries yield the same generalization performance. This can be interpreted in 
the sense that for large 01, learning is essentially hampered by (effective) noise in the data, 
for which queries are not much more effective than random examples (cf the discussion 
in [5]).  For finite 01, the behaviour of K depends on A and AOpt. For optimal weight decay 
A = Aopt (figure 2(a)), K has a maximum at 01 = 1 the height of which diverges as for 
A,, + 0. For A A,,, the results are qualitatively similar but, for identical values of hop,, 
K IS generally larger than for optimal weight decay A = Aopt. For A < hop (figure 2(b)), K 
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Figure 2. Relative improvement K in generalization error due to MSSE queries. for (a) optimal 
weight decay, L = LoPC, and (b) L = Lop,JIO. 

tends to be smaller than for optimal weight decay; in fact, for Aopt > 2, values of K < 1 
can occur which means that queries do worse than random examples. As discussed in [5 ] ,  
this can be interpreted in the sense that for A c A,,,, the weight decay ‘underestimates’ 
the effective teacher noise level, leading to spurious information gain in student space and 
thus making the student space entropy an unreliable indicator of generalization performance 
improvement. This case is particularly relevant for nonlinear teachers where Adpr can be 
very large even if there is no actual noise on the teacher outputs. Nevertheless, even for 
A < Aqt the asymptotic expansion of K = 1 + 1/01 + O(l/ry2) given above remains valid, 
and hence K necessarily increases above one for large enough 01. 

The fact that K tends to unity for 01 + 00 implies that the relative improvement in 
generalization error over random examples due to MSSE querying tends to zero in this 
limit. In the next section we shall explore whether it is possible to improve generalization 
performance more significantly by using MTSE queries. Before doing so, however, we briefly 
mention the analogue of the result (3.2) for the average training error, in order to show that 
the training error is affected by the teacher nonlinearity in qualitatively the same way as the 
generalization error. To remove the trivial scaling with the number of training examples of 
the training error E, defined in (2.5), we consider the quantity et = E t / p .  Performing an 
average over students, training sets and teachers as for the generalization error, we find 

1 A2 

01 01Aopc 
= eg.min [ 1 - - + - (G(A) + (A - AOpt)Gr(A))] . ’ (3.9) 

As above, we have restricted ourselves to the case of zero training temperature T; non- 
zero T would give an additional positive contribution T( l  - AG(A))/2a to the average 
training error. The function G(A) is again given by (3.7) for random training examples and 
by (3.8) for MSSE queries. In equation (3.9) the teacher nonlinearity only enters through 
eg.min and A,,,, and hence we again find the analogy between nonlinear and noisy linear 
teachers discussed above. Figure 3 shows plots of +(a) for selected values of A and A,,,. 
Interestingly, it can be shown that the. training error is always smaller for MSSE queries 
than for random examples for A < A,,, whereas for h > A, it can also be greater. In 
comparison with the analogous relationships for the generalization error discussed above, 
the roles of the two A-regimes are thus reversed here. For large 01, the ratio of the training 
error for random examples to that for queries is 1 + A2/(AOptcy3) + O(l/(u4), which is always 
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( 0 )  ( b )  
1.0 , I 3 ,  I 

Figure 3. Average training e m r  et, m units of €g,min. for MSSE queries (curves which ye 

constant for 01 E [O. I]) and random examples. The weight decay parameter is (a) set to its 
optimal value, A = hOpt. and (b) A = 10 ,Iopl. 

larger than one for sufficiently large a. 
Note that for a -+ 00, tt tends to  mi^, as does the average generalization ermr tg. 

For random training examples, this is necessarily the case as the training error becomes an 
unbiased estimate of the generalization error for an infinite number of training examples. 
The fact that the result also holds for MSSE queries shows that they ‘cover’ the input space 
as well as random examples in the limit a -+ 00. This is not necessarily the case for queries 
chosen to optimize an objective function other than the student space entropy. An example 
of this are the MTSE queries discussed in the next section, for which the generalization error 
tends to a limiting value for a -+ 00 which depends on the weight decay A, whereas the 
mining error converges to 1 in this limit, independently of A, as shown in appendix B. In this 
case, therefore, the training error does not give an unbiased estimate of the generalization 
error, even for an infinite number of training examples. 

4. Minimum teacher space entropy (DITSE) queries 

We now consider the generalization performance achieved by MTSE queries. We remind 
readers that such queries could be employed if the teacher space is known, but a student 
of a simpler functional form has deliberately been chosen. As an example, consider a 
classification task, for which the teacher outputs are discrete class labels. In order to be 
able to use a training algorithm of gradient descent type, one might then choose to consider 
students with continuous outputs, for which the training error is a differentiable function of 
the student parameters. The scenario considered below, with a binary perceptron teacher 
and a linear perceptron student, can in fact be thought of as a simple model for situations of 
this kind. In general, the aim in using MTSE rather than MSSE queries would be to exploit the 
structure of the teacher space if this is known (for realizable tasks) to make query learning 
very efficient compared to random examples. In the binary teacherhear student scenario, 
this is indeed the case: as mentioned in the introduction, the efficacy of minimum entropy 
query learning is high for a realizable task with binary perceptron student and teacher, 
whereas it is comparatively low when both student and teacher are linear perceptrons. In 
the unrealizable case, one would thus hope, by using MTSE queries, to ‘transfer’ the benefits 
for query learning of the binary perceptron smcture of the teacher space into the student 
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space. 
The generalization performance achieved by MTSE and MSSE queries will differ most 

when the post-eaining student distribution and the posterior teacher distribution are 
maximally different. For continuous, invertible teacher output functions d(h), the posterior 
teacher distribution will be approximately Gaussian once the number of training examples 
is sufficiently large, and thus similar to the post-training student distribution (which, as 
explained above, is Gaussian for the linear students we are considering). This motivates 
OUT choice of considering a non-invertible teacher output function in our analysis of MTSE 
queries; specifically, we study the extreme case of an output function which only takes 
on two different values f l ,  j ( h )  =, sgn(h), corresponding to a binary perceptron teacher. 
Since in this case the length of the teacher weight vector has no influence on the teacher’s 
input-output mapping, we set U,’ = 1 without loss of generality. Similarly, the value of 
U,” only scales the student overlap parameters R and QM and cancels from the average 

For simplicity, we assume that the training .data generated by the binary perceptron 
teacher is noise free (corresponding to A’(.) _= 0). The posterior probability distribution 
in teacher space given a certain training set is then proportional to the prior distribution on 
the version space (the set of all teachers that could have produced the training set without 
error) and zero everywhere else. From this the teacher space entropy (normalized by N )  
can be derived to be, up to an additive constant, 

generalization error, and hence we also set U,” = 1. .~ 

1 S, = - In V 
N 

where the version space volume V is given by (Q(z) = 1 for z ,> 0 and 0 otherwise) 

It can easily be verified that this entropy is minimized? by choosing queries x which ‘bisect’ 
the existing version space, i.e. for which the hyperplane perpendicular to x splits the version 
space into two equal halves [3 ,4] .  Such queries lead to an exponentially shrinking version 
space, V ( p )  = 2-P, and hence a linear decrease of the entropy, S, = -a In 2. We consider 
instead queries which achieve qualitatively the same effect, but permit a much simpler 
analysis of the resulting student performance. They are similar to those studied in the 
context of a realizable task in [22], and are defined as follows. The ( p  + 1)th query, x P + ’ ,  
is obtained by first picking a random teacher vector WJv from the version space defined by 
the existing p training examples, and then picking the new training input z P + ’  from the 
distribution of random inputs but under the constraint that i$xP+’ = 0. 

For the calculation of the student performance. i.e. the average generalization error, 
achieved by the approximate MTSE queries described above, we use an approximation based 
on the following observation. As the number of training examples, p ,  increases, the teacher 
vectors Ev from the version space will align themselves with the true teacher 20:; their 
components along the direction of wt will increase, whereas their components perpendicular 
to w: will decrease, varying widely across the ( N -  l)-dmensional hyperplane perpendicular 
to w:. Following [22], we therefore assume that the only significant effect of choosing 
queries xP+I with E;xP+’ = 0 is on the distribution of the component of xP+’  along 3. 
t More precisely. what is minimized is the value of the entropy after a new training example (I. y )  is added, 
averaged over the distribution of the unknown new training output y given the existing uaining set and the new 
training input I. See [SI for a more formal definition. 
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Writing this component as x:+' = ( z P + ~ ) ' w ~ / ~ w ~ J ,  its probability distribution can readily 
be shown to be 

P(x[+ ' )  x e x p (  - ~ ( X ~ + ~ / O ; S ~ ) ~ )  (4.1) 
where s, is the sine of the angle between GV and tu!. For finite N ,  the value of sp is 
dependent on the p previous training examples that define the existing version space and 
on the teacher vector 73" sampled randomly from this version space. In the thermodynamic 
limit, however, the variations of sp become vanishingly small and we can thus replace sp by 
its average value, which is a function~of p alone. In the thermodynamic limit, this average 
value becomes a continuous function of 01 = p / N ,  the number of training examples per 
weight, which we denote simply by s(01). The calculation can then be split into two parts. 
First, the function s(01) is obtained from a calculation of the teacher space entropy using 
the replica method, generalizing the results of 1231. The average generalization error can 
then be calculated by using an extension of the response function method described in [24] 
or by another replica calculation (now in student space) as in [SI. Below, we only give the 
results of these calculations, deferring details to appendix B. 

The first part of the calculation yields the teacher space entropy S, as the saddle point 
of 

with respect to 4 and r ,  which are, respectively, the average scalar product (normalized by 
Nu:) of two teachers from the version space, and of the true teacher and a teacher from 
the version space. Here we have used the abbreviations Dz = e x p ( - 4 z Z ) d z / 6  and 
H(z) = 1," Dz'. The value of s(01) can be expressed in terms of the saddle-point value 
of r ,  which we denote by r(01). as sZ(ol) = 1 - r2(a).  The saddle-point equations yield 
r(o1) and hence s(a) as a function of the values of s(01') for 0 < a' < OL. This determines 
the function s(01) recursively, starting from the initial condition s(0) = 1. Evaluating 
this recursion numerically, we obtain the results plotted in figure 4. For large 01 values, 
the teacher space entropy decreases linearly with 01, with gradient c % 0.44, whereas the 
entropy for random examples, also shown for comparison, decreases much more slowly 

-3- 

-4- ---- S, (random examples) 

-5 I I I I I I I I I 

- S, (queries) 

hs(cy) (queries) 

0 1 2 3 4 S a 6  7 8 9 10 

Figure 4. MXE queries: teacher space entropy, SY (with value for random examples plotted for 
comparison). and Ins, the log of the sine of the angle between the m e  teacher and a random 
reacher from the version space. 



Query leaming in unrealizable tasks 6135 

(asymptotically like -1na [23]). The linear a dependence of the entropy for queries 
corresponds to an average reduction of the version space volume with each new training 
example by a factor of exp(-c) = 0.64, which is reasonably close to the factor $ for proper 
bisection of the version space. This shows that approximate MTSE achieve qualitatively the 
same results as true MTSE queries, and thus justifies our choice of analysing the former 
rather than the latter, 

Before discussing the student performance achieved by (approximate) MTSE queries, 
we note from figure 4 that Ins(a) decreases linearly with a for large a, with the same 
gradient as the teacher space entropy. Hence s ( a )  a exp(-ca) for large a, and MTSE 
queries force the teacher weight vectors from the version space to approach the true teacher 
exponentially quickly. It can easily be shown that if we were learning with a binary 
perceptron student, i.e. if we were considering a realizable task, then this would result in 
an exponentially decaying generalization error, cg c( exp(-ca). MTSE queries would thus 
lead to a marked improvement in generalization performance over random examples (for 
which eg c( l/a [Z3]). It is this significant benefit (in teacher space) of query learning 
that provides the motivation for using MTSE queries in unrealizable tasks such as the one 
considered here. 

From the numerical values of s(a), the average generalization error achieved by the 
linear student when learning from our approximate MTSE queries can be calculated as 
outlined in appendix B. The results plotted in figure 5 show that MTSE queries do not 
have the desired effect of translating the henefits in teacher space into improvements in 
generalization performance for the linear student. In fact, they actually lead to a deterioration 
of generalization Performance, i.e. a larger generalization error than that obtained for random 
examples. Worse still, they 'mislead' the student to such an extent that the minimum 
achievable generalization error is not reached even for an infinite number of training 
examples, e + OD. How does this happen? It can be verified from (B.5) and 03.6) 
that the angle between the student and teacher weight vectors tends to zero for a + OD as 
expected, while Q M ,  the normalized squared length of the student weight vector, approaches 

(4.3) 

where F(w) = JF das(a), ~ ( o D )  = J,"dors2(a) as defined in (B.4). Unless the weight 
decay parameter h happens to be equal to ?(OD) - ?(CO), this is different from the optimal 
asymptotic value, which is Z / H .  This is the reason why, in general, the linear student does 
not reach the minimum possible generalization error even as a + W. The approach of 

to its non-optimal asymptotic value can cause an increase in the generalization error 
for large a and a corresponding minimum of the generalization error at some finite a, as 
can be seen in the plots for h = 0.01 and 0.1 in figure 5. For h = 0, equation (4.3) has 
the following intuitive interpretation. As a increases, the version space shrinks around the 
true teacher U$, and hence MTSE queries become 'more and more orthogonal' to wt. As a 
consequence, the distribution of training inputs along the direction of W E  is narrowed down 
progressively (cf equation (4.1)). Trying to find a best fit to the teacher's binary output 
function over this narrower range of inputs, the linear student learns a function which is 
steeper than the best fit over the range of random inputs (which would give minimum 
generalization error). This corresponds to a suboptimally large length of the student weight 
vector, in agreement with (4.3): QM(a -+ 00) > Z / H  for h = 0 because S~(OD) < ?(OD). 

Summarizing the results of this section, we have found that although MTSE queries 
are very beneficial in teacher space, they are entirely misleading for the linear student, to 
the extent that the student does not learn to approximate the teacher optimally even for 

- 
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x = 0.01 
x = 0.1 
A =  1 

- 
--__ 
_____-__ 

I I I I I I I I I 
0 1 2 3 4 S a 6  7 8 9 10 

Figure 5. Generalization error for MISE queries (higher curves of each pair) and random 
examples (lower curves), for weight decay A = 0.01.O.l. 1. The cuwes for raadom examples 
(which are virtually indistinguishable from one a nother already at 01 = 10) converge to the 
minimum achievable generalization emf ~ ~ . ~ i , ,  (short-broken curve) as U + CQ. 

an infinite number of training examples. With the benefit of hindsight, we note that this 
makes intuitive sense since the teacher space entropy, according to which MTsE queries are 
selected, contains no feedback about the progress of the student in learning the required 
generalization task, and thus MTSE queries cannot be guaranteed to have a positive effect. 

It is tempting to think that sufficient feedback might be restored by selecting queries 
orthogonal to the weight vector of a random student from the post-training distribution, rather 
than of a random teacher from the version space, i.e. the posterior teacher distribution. In 
this case,  CY), R and QN are obtained by solving (B.5) and (B.6) together with the relation 
$(CY) = [I - R z / Q N ] ’ / 2  in a self-consistent manner. The result is a power-law decay 
s(a) a: for large CY, and a diverging length of the student weight vector, QN 0: al/’. 
From equation (2.3), this leads to a similar divergence of the average generalization error, 
and the generalization performance achieved by such ‘heuristic feedback queries’ is thus 
even worse than for MTSE queries. Again, an intuitive explanation of this result can be 
found by considering the narrowing down of the input distribution along the direction 
of the true teacher w! that is generated by querying. For MTSE queries, this narrowing 
down is exponentially fast, effectively ‘freezing’ the length of the student weight vector 
to a suboptimal value for sufficiently large CY, whereas for the heuristic feedback queries 
considered above the narrowing down is sufficiently slow to allow the length of the student 
weight vector to adapt steadily and thus to grow arbitrarily large as the width of the input 
distribution shrinks to zero. 

5. Summary and discussion 

We have found in our study of an unrealizable task with a linear perceptron student and a 
general nonlinear perceptron teacher that queries for minimum student and teacher space 
entropy, respectively, have very different effects on generalization performance. Minimum 
student space entropy (MSSE) queries essentially have the same effect as for a linear student 
learning a noisy linear teacher, with the effective noise level given by the sum of the actual 
noise level and an additional contribution due to the fact that the student cannot leam the 
teacher perfectly. Hence the structure of the student space is the dominant influence on 
the efficacy of query learning. Minimum’teacher space entropy queries (MTSE) on the other 
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hand, which we have investigated for the case of a binary perceptron teacher, perform worse 
than random examples, leading to a higher generalization error even for an infinite number 
of training examples. This result is intuitively reasonable since the teacher space entropy 
contains no feedback about the progress of the student in learning the required generalization 
task. We have also found that such feedback cannot easily be restored by more heuristic 
methods of query selection similar to MTSE queries. 

Our results, then, are a mixture of good and bad news for query learning for minimum 
entropy (i.e. maximum information gain) in unrealizable tasks. The bad news is that MTSE 
queries, due to a lack of feedback information about student progress, are not enough 
to translate significant benefits in teacher space into similar improvements of student 
performance and may, in fact, yield worse performance than random examples. The good 
news is that for MSSE queries, we have found evidence that the smchue of the student 
space is the key factor in determining the efficacy of query learning. If this result holds 
more generally, then statements about the benefits of query learning can be made on the 
basis of how one is trying to learn only, independently of what one is trying fo learn-a 
result of obvious practical significance. 
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Appendix A. Calcnlation for random examples and MSSE Queries 

In this appendix, we outline the calculation of the average generalization error for random 
examples and MSSE queries. For this purpose, as pointed out in section 2, it is sufficient to 
obtain the averages of the overlap parameters R and Q,“. The averages over the Gaussian 
post-training distribution are straightforward and yield 

Since both for random examples and for MSSE queries, each new training input depends, 
at most, on the previous training inputs, we can use Bayes’ theorem to decompose the 
remaining average over training sets and teachers into one over training outputs, teachers 
and training inputs. Formally, one has 

P(@‘P’IV)P(V),= P W l I ~ z ~ l 3  v ) P ( V ) P ( { z p l )  (~4.2) 
where 

P 
P(~Y’Il(~”1. V )  = n P(Y”b’3  V )  

*=I 

and we will perform the averages on the RHS of (A.2) in the order from left to right. The 
average over the yp-dependent terms in (A.l) yields, from the assumptions (2.1) and (2.2) 
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where we have set h’” = -)&x”. Performing the average over the prior teacher 
distribution P(V) a exp(-+,’/u,’) for fuced {z”},  the h’ become Gaussian random 
variables with zero means and (co-)variances 

For the assumed spherical input distribution, + ( z ” ) ~  = U: and the variance of each of 
the hP is thus identical to cry’.,’. The covariance between h” and h” for p U is 
much smaller since, for random examples, $(zP)‘z” is O( l / f l ) .  The same holds 
for MSSE queries, due to the pseudo-random overlaps between training inputs that they 
produce. The resulting weak correlation of h” and hY can be used to expand the 
average of j(h’)g(h”). To this end, one writes h” as h” = eh& + (1 - c2)’IZh, where 
E = (h@h”)/((h”)’) = (z”)’z”/(No,Z) and h is a zero mean Gaussian variable uncorrelated 
with h” which has variance (i2) = <(h”)2) = ((h”)’) = U,”.:. Expanding in the small 
parameter E = O(l/f l )  << 1, one obtains (g’ = di/dh) 

1 
(2(h’)z?(hY))p(v) = W)): + No;z(zC)‘zY(hz?(h))h(j’(h))h + 0(1/N) 

where h is a zero mean Gaussian random variable with variance uy’u,”. The remaining 
averages over the teacher prior P(Y)  are straightforward: 

(2%”) + A’(h’))p(v) = (g2(h) + A’@)), 

where the second equality follows from the fact that due to the isotropy of the teacher prior, 
the contribution from the components of w, orthogonal to I* vanishes. 

Collecting the results obtained so far we have for the averages of R and QN at fixed {&}: 

XM 
( W ( h ” ) ) p ( v )  = - (hi?(h))h 

f i U ?  

The last term in (A.4) can be shown to vanish upon averaging over the training inputs, due 
to the fact that both for random examples and for MSSE queries the distribution of each 
individual training input z p  is invariant under the reflection z& + - z P ,  whatever the 
values of the other training inputs. The summations over p and U in (A.3) and (A.4) can 
be written more succinctly by exploiting the definitions (2.8): 

- ~ ( z ” ) ’ M ; X z ’ = - t r M - X A  1 1 ( k = 1 , 2 )  
N N  N 2  & 



Query learning in unrealizable tasks 6139 

If we now introduce the function G(A) = $(trM;l)p(pl) and the constants ye#, U& 
detned in (3.3) and (3.4), we can use the relations A = &fV - Au:~ and aG/aA = G’ = 
-~(tr&f;’)~({~u~) to write the final averages of R and Q,, as 

(R) = u,’y&(l- AG) 
2 

G + * ( G  + AG‘) + yeff(l - 2AG - A’G’) 

Inserting these results into (2.3), we finally obtain the expression (3.2) for the average 
generalization error. ParentheticaIly, we note that for random examples, the result (3.2) can 
also be obtained from a replica calculation [E].  

Appendix B. Cdcdation for MTSE queries 

In this appendix, we sketch the calculation of the average generalization error achieved by 
our linear perceptron student when leaming to approximate a noisefree binary perceptron 
teacher from MTSE queries. We use the approximation explained before equation (4.1) in 
order to carry out the average over training inputs. Specifically, we assume that the effect 
of m S E  queries on the distribution of training inputs is non-negligible only for the input 
components along the direction of the true teacher tu!, which are distributed according 
to (4.1). The other input components, i.e. the ones orthogonal to the true teacher, which 
for the ( p  + 1)th query zP+’ are given by E:+’ = zP+’  - x:+’w!/Iw;I, are therefore 
distributed as for random examples, obeying the spherical constraint z2 = N (remember 
that we set U,’ = U: = 1): 

P(z;+1Ix,p+’) c( 6((z:+c’)Z + (XOp+I)’ - N) 
In the thermodynamic limit, this spherical distribution can be replaced by a Gaussian 
distribution yielding the same average value of (z:”)’, and the term ( x { + ’ ) ~ ,  which i s  
of order unity, can be neglected compared to N .  Combining this with (4.1). the distribution 
of zP+’ can be written as a Gaussian with reduced covariance along the direction of the 
true teacher WE 

As explained in the text, sp, the sine of the angle between the true teacher and a random 
teacher from the version space defined by the first p training examples, is self-averaging 
in the thermodynamic limit and can therefore be regarded as a fixed constant whose value 
will be calculated later. 

In the first part of the calculation, the averaget of the teacher space entropy over all 
training sets generated by MTSE queries is determined, and this is then used to obtain the 
actual values of the s, as explained after equation (4.2). One uses the replica trick 

calculating the r.h.s. for positive integer values of n and continuing analytically to n = 0. 
By introducing n replicas of the teacher space, the nth moment of the version space volume 

t The leacher space entropy is, like the generalization error, self-averaging. which means that its value for a 
typical training se1 becomes arbitrarily close to its average over all training seis in the thermodynamic limit. 
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is expressed as 

Following [23], one can use the fact that for the noise-free binary perceptron teacher 
y” = sgn($(~;)~xP) to decompose the product of @-functions for fixed training example 
index /L as 

Introducing Gardner representations for the @-functions one can rewrite this as 

For a fixed true teacher w!, this expression can now easily be averaged over the distribution 
of xfi as given by (B.1). In principle, an average over the distribution of true teachers, 
P(wt) o( exp(-iwt) also has to be carried out. However, this average can be dropped due 
to the isotropy of the problem both in input space and in weight vector space: The result 
for fixed w! can only depend on (w;)’, which for the chosen Gaussian teacher space prior 
equals N up to corrections which can be neglected in the thermodynamic l i t .  Using this, 
the average of (B.2) over xJ’ becomes 

where we have introduced the order parameters 

(1- 1 
N r - -(wa)’wo 

N Y  
The calculation from this point onwards proceeds exactly as in [23], yielding a saddle- 
point integral over r‘, qob and the corresponding conjugate order parameters. Assuming a 
replica-symmetric saddle-point, r‘ = r and qob = q + (1 - q)&b,  and replacing the sp by 
a continuous function  CY) of CY = p / N ,  one obtains the average teacher space entropy in 
the form (4.2) given in the textt. 

In the second part of the calculation, the average generalization error achieved by the 
linear perceptron student when learning from MTSE queries is calculated. The necessary 
averages of the overlap parameters R and Q, can again be obtained from a replica 
calculation. One starts from the free energy corresponding to the Gibbs post-training 
distribution of students (2.7) 

f =,--lnZ 

‘1 
q ob - - -(w:)‘w,” 

Z = dw,“exp(-E/T) 03.3) 

which can be regarded as a generating function for the averages of the overlap parameters. 
The free energy is self-averaging and its value in the thermodynamic limit can hence be 
obtained by averaging over all training sets, again using the replica method. The calculation 

t Note that within an exact treatment not relying on the approximation explained before (4.1), it can be shown 
that the exact symmetry q = r must hold at the saddle point. In OUT approximation, this q-r symmetry is violated. 
However, the violations are relatively small, in the sense that the relative deviation between q and r (and 1 - q 
and 1 - r ,  which are the more relevant quantities for large LL, when both q and r tend to unity) is never larger 
lhan 10%. 

s T 
N 
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follows closely the standard method [13], with appropriate modifications taking into account 
the presence of a weight decay [8 ]  and the nonlinearity of the teacher output function [15]. 
The only major difference from the calculation for learning from random examples is the 
modified input distribution f.B.1). Introducing the averages 

one obtains the average free energy as the saddle point of 

QN - RZ - T InIZa(QN - Q)] + crT In[l + (Q, - Q ) / T l  
‘(1Qfl-T 2 Q>- Q 

with respect to R. QN and Q = $(wN)~LNlo~p~).  The saddle-point values of R and Q,v are, 
in the thermodynamic limit, identlcal to their averages. Solving the saddle-point equations 
and restricting attention to the limit T + 0, one thus finds: 

Here the functions G and F are given, respectively, by (3.7) and 

The average generalization error achieved by the linear student as shown in figure 5 is 
obtained by inserting the results (B.5) and (B.6) into (2.3) (with the substitutions g(h)  = 
sgn(h) and A’@) k.0 appropriate for a noise-free binary perceptron teacher) and using the 
numerical results for s(01) obtained from the calculation of the teacher space entropy. Note 
that (B.5) and (B.6) can also be obtained within the response function formalism of [24]. 
The function F then emerges as a generalization of the standard response function G in the 
form F = $trM-’M-’ ~ ,v ) p ( I z r ) ) .  ‘The matrix M, = AJ+ C,(l/si - l ) d ( ~ P ) ~ ,  with 
A, determined by the condition k tr M;’ = 1, occurs in the correlations of the variables 
z ,  = (~@)~w; / Iw$  in the form (z@zY)p(y l (zp) )  = +c”M;lz”. 

Finally, the replica formalism can also be used to obtain the average training error 
achieved by MTSE queries. From the definitions (2.6) and (B.3), one has 

By differentiating f.B.5) and inserting the saddle-point value of Q, given by Q = QN- TG, 
one obtains, in the limit, T -+ 0 

Er = 
- 

1 A s*(LY)R’ - 24‘27%(01)R 
2 d l +  G) 

- -(Q.v - R’) + 2(1+G) 201 

In the limit 01 + 00, only the first term survives and converges to 1/2 since G + 0; this 
proves the A-independence of the asymptotic value of the average training error referred to 
in section 4. 
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